Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36141725

RESUMO

Numerous fires occurring in hospitals during the COVID-19 pandemic highlighted the dangers of the existence of an oxygen-enriched atmosphere. At oxygen concentrations higher than 21%, fires spread faster and more vigorously; thus, the safety of healthcare workers and patients is significantly reduced. Personal protective equipment (PPE) made mainly from plastics is combustible and directly affects their safety. The aim of this study was to assess its fire safety in an oxygen-enriched atmosphere. The thermodynamic properties, fire, and burning behavior of the selected PPE were studied, as well as its mechanical and electrostatic discharge properties. Cotton and disposable aprons were classified as combustible according to their LOI values of 17.17% and 17.39%, respectively. Conall Health A (23.37%) and B/C (23.51%) aprons and the Prion Guard suit (24.51%) were classified as self-extinguishing. The cone calorimeter test revealed that the cotton apron ignites the fastest (at 10 s), while for the polypropylene PPE, flaming combustion starts between 42 and 60 s. The highest peak heat release rates were observed for the disposable apron (62.70 kW/m2), Prion Guard suit (61.57 kW/m2), and the cotton apron (62.81 kW/m2). The mean CO yields were the lowest for these PPEs. Although the Conall Health A and B/C aprons exhibited lower pHRR values, their toxic CO yield values were the highest. The most durable fabrics of the highest maximum tensile strength were the cotton apron (592.1 N) and the Prion Guard suit (274.5 N), which also exhibited the lowest electrification capability. Both fabrics showed the best abrasion resistance of 40,000 and 38,000 cycles, respectively. The abrasion values of other fabrics were significantly lower. The research revealed that the usage of PPE made from polypropylene in an oxygen-enriched atmosphere may pose a fire risk.


Assuntos
COVID-19 , Príons , Atmosfera , Humanos , Oxigênio/análise , Pandemias , Equipamento de Proteção Individual , Polipropilenos , Eletricidade Estática
2.
Molecules ; 26(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203962

RESUMO

Three types of cross-linked porous organic polymers (either oxygen-, nitrogen-, or sulfur-doped) were carbonized under a chlorine atmosphere to obtain chars in the form of microporous heteroatom-doped carbons. The studied organic polymers constitute thermosetting resins obtained via sol-gel polycondensation of resorcinol and five-membered heterocyclic aldehydes (either furan, pyrrole, or thiophene). Carbonization under highly oxidative chlorine (concentrated and diluted Cl2 atmosphere) was compared with pyrolysis under an inert helium atmosphere. All pyrolyzed samples were additionally annealed under NH3. The influence of pyrolysis and additional annealing conditions on the carbon materials' porosity and chemical composition was elucidated.

3.
Molecules ; 26(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33514064

RESUMO

Nitrogen-doped and heteroatom multi-doped carbon materials are considered excellent metal-free catalysts, superior catalyst supports for transition metal particles and single metal atoms (single-atom catalysts), as well as efficient sorbents for gas- and liquid-phase substances. Acid-catalyzed sol-gel polycondensation of hydroxybenzenes with heterocyclic aldehydes yields cross-linked thermosetting resins in the form of porous organic polymers (i.e., organic gels). Depending on the utilized hydroxybenzene (e.g., phenol, resorcinol, phloroglucinol, etc.) and heterocyclic aldehyde variety of heteroatom-doped organic polymers can be produced. Upon pyrolysis, highly porous and heteroatom-doped carbons are obtained. Herein, polycondensation of phloroglucinol with imidazole-2-carboxaldehyde (and other, similar heterocyclic aldehydes with two heteroatoms in the aromatic ring) is utilized to obtain porous, N-doped organic and carbon gels with N-content of up to 16.5 and 12 wt.%, respectively. Utilization of a heterocyclic aldehyde with two different heteroatoms yields dually-doped carbon materials. Upon pyrolysis, the porous polymers yield ultramicroporous N-doped and N,S co-doped carbons with specific surface areas of up to 800 m2g-1. The influence of the initial composition of reactants and the pyrolysis temperature on the structure and chemical composition of the final doped organic and carbon materials is studied in detail.


Assuntos
Carbono/química , Imidazóis/química , Nitrogênio/química , Polímeros/química , Catálise , Géis/química , Porosidade , Pirólise , Temperatura
4.
Materials (Basel) ; 13(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825752

RESUMO

Carbon-based (nano)materials doped with transition metals, nitrogen and other heteroatoms are considered active heterogeneous catalysts in a wide range of chemical processes. Recently they have been scrutinized as artificial enzymes since they can catalyze proton-coupled electron transfer reactions vital for living organisms. Herein, interactions between Gram-positive and Gram-negative bacteria and either metal-free N and/or S doped or metal containing Fe-N-S co-doped porous carbons are studied. The Fe- and N-co-doped porous carbons (Fe-N-C) exhibit enhanced affinity toward bacteria as they show the highest adsorption capacity. Fe-N-C materials also show the strongest influence on the bacteria viability with visible toxic effect. Both types of bacteria studied reacted to the presence of Fe-doped carbons in a similar manner, showing a decrease in dehydrogenases activity in comparison to controls. The N-coordinated iron-doped carbons (Fe-N-C) may exhibit oxidase/peroxidase-like activity and activate O2 dissolved in the solution and/or oxygen-containing species released by the bacteria (e.g., H2O2) to yield highly bactericidal reactive oxygen species. As Fe/N/ and/or S-doped carbon materials efficiently adsorb bacteria exhibiting simultaneously antibacterial properties, they can be applied, inter alia, as microbiological filters with enhanced biofouling resistance.

5.
Langmuir ; 30(47): 14276-85, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25380545

RESUMO

Direct, acid (HCl) initiated sol-gel polycondensation of resorcinol with pyrrole-2-carboxaldehyde or its derivative N-methyl-2-pyrrolecarboxaldehyde yields thermosetting phenolic organic gels with N-content of up to 8.4 wt %. After carbonization, sturdy monoliths of N-doped carbon xerogels with N-content of up to 8 wt % are produced. The morphology and porosity of the doped carbons can be tuned by the solvent composition and the amount of polymerization catalyst used. An increase in carbonization temperature from 600 to 1000 °C strongly affects the carbon gels' microporosity, resulting in a decrease in N2 adsorption capacity, but a significant increase in H2 adsorption capacity (at -196 °C). The growing H2 sorption capacity with the decreasing specific surface area (measured by N2) is related to the gradual shrinkage of the carbon xerogel matrix and narrowing of the small micropores. In addition, it is demonstrated that pyridine-based heterocyclic aldehydes, that is, 2- or 4-pyridinecarboxaldehyde, condensate with resorcinol in basic conditions (KOH, NH4OH). However, in this case, monoliths cannot be produced and powders/rigid solid precipitates are obtained instead. If NH4OH is used as a sol-gel polycondensation catalyst, N-doped foams are obtained as a final carbonaceous product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...